Abstract
The strain energy release rate (SERR) theory, combined with Linear Fracture Mechanics and Rotordynamics theories, has been widely used over the last three decades in order to calculate the compliance that causes a transverse surface crack in a rotating shaft. In this paper, the basic theory of this approach is presented, along with some extensions and limitations of its usage. The SERR theory is applied to a rotating crack and gives good results. The linear or nonlinear cracked rotor behavior depends on the mechanism of opening and closure of the crack during the shaft rotation. A brief history of the SERR theory is presented. In the 1970s, this theory met with rotordynamics as a result of research conducted on the causes of rotor failures in power industries. The main goal of this research was to give the engineer an early warning about the cracked situation of the rotor—in other words, to make the identification of the crack possible. Different methods of crack identification are presented here as well as those for multi-crack identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.