Abstract

The diffusion of ferrocene (Fc) molecules in ionic liquids (ILs) was studied using cyclic voltammetry. The symmetric ILs 1,3-dialkylimidazolium bis[(trifluoromethane)sulfonyl]amide ([(CN/2)2im][NTf2] with N = 4, 6, 8, and 10) and non-symmetric ILs 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CN−1C1im][NTf2] with N = 3, 4, 6, 8, and 10) were used to examine the effect of the symmetry of alkyl substitution on the cation and the role of alkyl chain length on the diffusion of Fc. The diffusion coefficient D of Fc was determined by applying the Randles-Sevcik equation to the peak current in the cyclic voltammograms. The diffusion coefficient was found to be higher in a symmetric IL than in a non-symmetric IL with the same number of alkyl carbon atoms N, with the difference decreasing with increasing N. The diffusion of Fc in these ILs is well described by the Stokes-Einstein equation with slip boundary conditions, but with an effective hydrodynamic radius of 0.23 ± 0.01 nm, which is less than the 0.27 nm crystallographic radius of Fc, in agreement with previous studies of the diffusion of solutes in ILs that show the hydrodynamic radius to be less than the van der Waals radius of the solute.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.