Abstract
The collapse of Silicon Valley Bank on March 10, 2023, had a profound impact on the stock prices of many companies in the United States. This study aims to examine the response of other banks in the US to this event by utilizing the Autoregressive Integrated Moving Average (ARIMA) model to forecast their stock prices. The research demonstrates that the ARIMA model effectively predicts the general trend of these banks' stock prices, with Root Mean Squared Error (RMSE) values below 1 for four out of six major US banks. These findings indicate that the proposed method is a promising tool for managing sudden fluctuations in stock prices, outperforming traditional linear regression models. Consequently, this research provides valuable insights for investors and financial institutions in managing and mitigating risks associated with abrupt market changes. Additionally, the study contributes to a greater understanding of the effects of bank collapses on the stock market. Overall, the research highlights the significance of incorporating advanced forecasting methods, such as ARIMA, in analyzing and predicting stock price movements in volatile market conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.