Abstract
We consider the stochastic wave equation with multiplicative noise, which is fractional in time with index H > 1/2, and has a homogeneous spatial covariance structure given by the Riesz kernel of order α. The solution is interpreted using the Skorohod integral. We show that the sufficient condition for the existence of the solution is α > d − 2, which coincides with the condition obtained in Dalang (Electr J Probab 4(6):29, 1999), when the noise is white in time. Under this condition, we obtain estimates for the p-th moments of the solution, we deduce its Hölder continuity, and we show that the solution is Malliavin differentiable of any order. When d ≤ 2, we prove that the first-order Malliavin derivative of the solution satisfies a certain integral equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.