Abstract
We develop Bayesian methodologies for constructing and estimating a stochastic quasi-chemical model (QCM) for bacterial growth. The deterministic QCM, described as a nonlinear system of ODEs, is treated as a dynamical system with random parameters, and a variational approach is used to approximate their probability distributions and explore the propagation of uncertainty through the model. The approach consists of approximating the parameters’ posterior distribution by a probability measure chosen from a parametric family, through minimization of their Kullback–Leibler divergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.