Abstract
The movement of proteins through the cell membrane is essential for cell-to-cell communication, which is a process that allows the body's immune system to identify any foreign cells, such as cells from another organism and pathogens; this movement is also essential for protein-to-protein interactions and protein-to-membrane interactions which play a significant role in drug discovery. This paper presents the stochastic nature exhibited by proteins during cell-to-cell communication. We study the movement of proteins through the cell membrane under the influence of an external force F and drag force with drag coefficient γ. We derive the stochastic diffusion equation, which governs the motion of the proteins; we start by describing the random motion exhibited by the proteins in terms of probability using a one-dimensional lattice model; this occurs when proteins move inside the cell membrane and bind with other proteins inside the cell membrane. We then introduce an external force and a drag coefficient into a Brownian motion description of the movement of proteins when they move outside the cell membrane and bind with proteins from other cells; this phenomenon occurs during cell communication when one cell releases messenger proteins to relay information to other cells. This, in turn, allows us to obtain the stochastic diffusion equation by applying Ito^'s Lemma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.