Abstract

Kleptoparasitism, the stealing of food items from other animals, is a common behaviour observed across a huge variety of species, and has been subjected to significant modelling effort. Most such modelling has been deterministic, effectively assuming an infinite population, although recently some important stochastic models have been developed. In particular the model of Yates and Broom (Stochastic models of kleptoparasitism. J. Theor. Biol. 248 (2007), 480–489) introduced a stochastic version following the original model of Ruxton and Moody (The ideal free distribution with kleptoparasitism. J. Theor. Biol. 186 (1997), 449–458), and whilst they generated results of interest, they did not solve the model explicitly. In this paper, building on methods used already by van der Meer and Smallegange (A stochastic version of the Beddington-DeAngelis functional response: Modelling interference for a finite number of predators. J. Animal Ecol. 78 (2009) 134–142) we give an exact solution to the distribution of the population over the states for the Yates and Broom model and investigate the effects of some key biological parameters, especially for small populations where stochastic models can be expected to differ most from their deterministic equivalents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.