Abstract

In the stochastic matching problem, we are given a general (not necessarily bipartite) graph G(V,E), where each edge in E is realized with some constant probability p > 0 and the goal is to compute a bounded-degree (bounded by a function depending only on p) subgraph H of G such that the expected maximum matching size in H is close to the expected maximum matching size in G. The algorithms in this setting are considered non-adaptive as they have to choose the subgraph H without knowing any information about the set of realized edges in G. Originally motivated by an application to kidney exchange, the stochastic matching problem and its variants have received significant attention in recent years. The state-of-the-art non-adaptive algorithms for stochastic matching achieve an approximation ratio of 1/2-e for any e > 0, naturally raising the question that if 1/2 is the limit of what can be achieved with a non-adaptive algorithm. In this work, we resolve this question by presenting the first algorithm for stochastic matching with an approximation guarantee that is strictly better than 1/2: the algorithm computes a subgraph H of G with the maximum degree O(log(1/p)/p such that the ratio of expected size of a maximum matching in realizations of H and G is at least 1/2 + δ0 for some absolute constant δ0 > 0. The degree bound on H achieved by our algorithm is essentially the best possible (up to an O(log(1/p)) factor) for any constant factor approximation algorithm, since an Ω(1/p) degree in H is necessary for a vertex to acquire at least one incident edge in a realization. Our result makes progress towards answering an open problem of Blum et al (EC 2015) regarding the possibility of achieving a (1 - e)-approximation for the stochastic matching problem using non-adaptive algorithms. From the technical point of view, a key ingredient of our algorithm is a structural result showing that a graph whose expected maximum matching size is OPT always contains a b-matching of size (essentially) b ... OPT, for b = 1/p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.