Abstract
We extend some aspects of the Hamilton-Jacobi theory to the category of stochastic Hamiltonian dynamical systems. More specifically, we show that the stochastic action satisfies the Hamilton-Jacobi equation when, as in the classical situation, it is written as a function of the configuration space using a regular Lagrangian submanifold. Additionally, we will use a variation of the Hamilton-Jacobi equation to characterize the generating functions of one-parameter groups of symplectomorphisms that allow to rewrite a given stochastic Hamiltonian system in a form whose solutions are very easy to find; this result recovers in the stochastic context the classical solution method by reduction to the equilibrium of a Hamiltonian system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.