Abstract

In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the generation of any number of Monte Carlo samples based on only a few inversions of the original distribution plus independent samples from a standard normal variable. We will show that with this path-independent collocation approach the exact simulation of the Heston stochastic volatility model, as proposed in Broadie and Kaya [Oper. Res., 2006, 54, 217–231], can be performed efficiently and accurately. We also show how to efficiently generate samples from the squared Bessel process and perform the exact simulation of the SABR model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.