Abstract

Multisensory integration and attention can interact in a way that attention to the visual constituent of a multisensory object results in an attentional spreading to its ignored auditory constituent, which can be either stimulus-driven or representation-driven depending on whether the object's visual constituent receives extra representation-based selective attention. Previous research using simple unrelated audiovisual combinations has shown that the stimulus-driven attentional spreading is contingent on audiovisual temporal simultaneity. However, little is known about whether this temporal constraint applies also to the representation-driven attentional spreading, and whether it holds for the stimulus-driven process elicited by real-life multisensory objects. The current event-related potential study investigated these questions by systematically manipulating the visual-to-auditory stimulus onset asynchrony (SOA: 0/100/300 ms) in an object-selective visual recognition task wherein the representation-driven and stimulus-driven spreading processes, measured as two distinct auditory negative difference (Nd) components, could be isolated independently. Our results showed that both the representation-driven and stimulus-driven Nds decreased as the SOA increased. Interestingly, the representation-driven Nd was completely absent, whereas the stimulus-driven Nd was still robust, when the auditory constituents were delayed by 300 ms. These findings not only indicate that the role of audiovisual simultaneity in the representation-driven attentional spreading has been underestimated, but also suggest that learned associations between the unisensory constituents of real-life objects render the stimulus-driven attentional spreading more tolerant of audiovisual asynchrony.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call