Abstract
Bimetallic nanoparticles have continued to attract interest as drug delivery systems in cancer therapy even though their nature of interaction with small molecules is limited. Currently, many delivery systems based on monometallic nanoparticles are being fabricated for loading of drugs, thus prompting the need to explore and get more understanding of dendritic bimetallic nanostructure-drug interaction. The bimetallic gold-core palladium-dendritic shell nanoparticles (Au@PdNDs) were synthesized by hot injection method and stabilized with methoxy polyethylene glycol thiol (mPEG-SH). An anti-cancer drug, doxorubicin (DOX) was conjugated to the bimetallic nanodendrites leading to the formation of DOX/Au@PdNDs.PEG complex. We used TEM, FTIR, and zeta-potential to study the drug-nanodendrites interaction. The effect of DOX binding and release capacity with regards to pH, adsorption kinetics, solvent polarity, isotherms and temperature on Au@PdNDs.PEG were investigated. The results showed a spontaneous heterogeneous binding of DOX on the Au@PdNDs.PEG surfaces and time-dependent loading capacity of ~90% maximum adsorption within 24h. Moreover, the experimental results showed that the adsorption isotherm data fitted well with the Freundlich model and a pseudo-second order adsorption kinetics. The desorption of DOX was triggered under simulated tumor microenvironmental conditions and should open new opportunities for potential multi stimuli-responsive drug delivery applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.