Abstract

Research has demonstrated that dissolved organic carbon leaching from plastics can stimulate microbial activity in the ocean. However, similar situation has not been reported in freshwater, like rivers and lakes. The interaction between microplastic and microorganism may probably change water quality, causing operational issues during membrane water treatment, such as increased biofouling, pore blockage or formation of filter cake. In this study, the influence of microplastics (polyethylene, PE) on membrane biofouling and the microbial community during continuous-flow ultrafiltration was investigated. Results demonstrate that PE microplastics stimulate microbial activity in natural surface water and increase the production of extracellular polymeric substances (EPS). The images of scanning electron microscope-energy dispersive spectrometer (SEM-EDS) mapping have confirmed the presence of biofilm covered on the surface of microplastic particles. Biofouling layer became more hydrophobic with a dense and compact surface due to the accumulation of EPS stimulated by microplastics. Specific components of EPS, especially tryptophan-like soluble microbial byproducts with molecular weight distribution from 4 kDa to 30 kDa, were increased with the addition of microplastic and more likely to be entrapped by membrane pores aggravating membrane fouling. The components of EPS stimulated with the presence of microplastic was the main factor that caused membrane fouling. The microbial diversity was also affected with the addition of microplastic. In conclusion, the mechanism of membrane biofouling causing by microplastics in surface water is clear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.