Abstract
BackgroundOvarian chronic inflammation has been known to incidence in the laying hen mainly via increasing laying frequency and microbial infection, especially during late stage of production period. This study was aimed to evaluate beta-2 adrenergic agonist (Beta-2 Adrenergic Agonist, BAA) Salmeterol and beta blocker (Beta Blocker, BB) Propranolol on the gene expression of the ovarian pro- and anti-inflammatory mediators, inflammatory responses of immune system, ovarian functions and, hormones in the laying hens on the late stage of production period. Forty-eight White Leghorn hens aged 92 weeks were used for 4 weeks to be supplemented by Salmeterol and Propranolol. Ovulation rate and follicular growth were determined based on laying frequency and ovarian visual evaluation, respectively; the mRNA expressions of follicular beta-2 adrenergic receptor (Beta-2 Adrenergic Receptor, β2ADR), cyclooxygenases (Cyclooxygenases, COX) 1 and 2, and cytokines were measured by real-time PCR. The plasma concentration of ovarian hormones, cellular, and humoral immune responses were measured via ELISA, heterophil to lymphocyte ratio (Heterophil to Lymphocyte ratio, H:L), and sheep red blood cell (Sheep Red Blood Cell, SRBC) test, respectively.ResultsAs compared to control, both of BAA Salmeterol and BB Propranolol resulted in a significant decrease in the mRNA expression of β2ADR, cyclooxygenases, and pro- and anti-inflammatory cytokines (P < 0.01). A significant elevation was observed in the ovulation rate (P < 0.05), plasma estradiol content on both treated groups (P < 0.05), and the content of progesterone and was just significantly (P < 0.05) increased in Salmeterol group. H:L was reduced in BAA group (P < 0.05), and immunoglobulin (Ig) M was elevated in both treated hens, when compared to control. The results indicated that Salmeterol significantly increases body weight (P < 0.05).ConclusionThe stimulation and inhibition of beta-2 adrenergic signaling could reduce ovarian inflammatory condition in addition to enhancing laying efficiency in the aged laying hens.
Highlights
For the recent decades, due to the improvement of genetic technologies and breeding schedules, production efficiency has been increased in the farm animals like laying hens
According to Fig. 1. Beta-2 adrenergic receptor (β2ADR), cyclooxygenase-1 and 2 (COX)-1, COX-2, IL-1β, IL-6, IL-10, and Tumor necrosis factor (TNF-α) expressions were significantly lower in both of beta-2 adrenergic agonist (BAA) and beta blocker (BB) compare to the control (P < 0.01)
The results of this study have indicated that the administration beta-2 adrenergic agonist (BAA) Salmeterol and beta blocker (BB) Propranolol caused to down-regulate mRNA expressions of the pro-inflammatory mediators and beta-2 adrenergic receptor
Summary
Due to the improvement of genetic technologies and breeding schedules, production efficiency has been increased in the farm animals like laying hens. The immune system has been indicated to influence ovarian inflammatory condition via the outbreak and intensify of microbial infection and the high frequency of ovulatory process which accompany with infiltration of leukocytes and the production of inflammatory mediators such as cytokines [3,4,5] These could be as the justifiable reasons to contribute in the deterioration of production rate and egg quality in the laying hens [6], especially, in the late stage of production period [1]. This study was aimed to evaluate beta-2 adrenergic agonist (Beta-2 Adrenergic Agonist, BAA) Salmeterol and beta blocker (Beta Blocker, BB) Propranolol on the gene expression of the ovarian pro- and anti-inflammatory mediators, inflammatory responses of immune system, ovarian functions and, hormones in the laying hens on the late stage of production period. The plasma concentration of ovarian hormones, cellular, and humoral immune responses were measured via ELISA, heterophil to lymphocyte ratio (Heterophil to Lymphocyte ratio, H:L), and sheep red blood cell (Sheep Red Blood Cell, SRBC) test, respectively
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.