Abstract

A theoretical model for the determination of the stiffness and the thermal expansion coefficient of particulate composites is presented in this work. This model takes into consideration the influence of neighboring spherical particles on the thermo mechanical constants of the composite material consisting of matrix and filler. A microstructural composite model which represents the basic cell of the composite at a microscopic scale was transformed to a tetraphase spherical representative volume element, (R. V. E.), in order that classical theory of linear elasticity is applied. This work constitutes a modified consideration of body – centered tetrahedral models that appeared in the literature. The obtained theoretical results using this model were compared with experimental results carried out on iron particles reinforced epoxy resin composites as well as with other theoretical values derived from well known expressions given in the literature and derived by other scientists. Finally an observation of the fracture surface of the specimens was performed through S. E. Microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call