Abstract
This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Highlights
Cholesterol plays a critical role in cellular homeostasis
Residual, untagged hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) detected by immunoblot analysis in the reporter cells under sterol-depleted conditions suggested that at least one HMGCR allele remained untagged (Figure 1C, compare lanes 2 and 5), which was confirmed by PCR-amplification and sequencing of the genomic locus (Figure 1—figure supplement 1A–C)
The generation of a dynamic, cholesterol-sensitive endogenous HMGCR reporter cell line allowed an unbiased genetic approach to identify the cellular machinery required for sterol-accelerated HMGCR degradation
Summary
As an abundant lipid in the eukaryotic plasma membrane, it modulates vital processes including membrane fluidity and permeability (Hannich et al, 2011; Haines, 2001) and serves as a precursor for important metabolites including steroid hormones and bile acids (Payne and Hales, 2004; Chiang, 2013). The cholesterol biosynthetic pathway in mammalian cells provides intermediates for essential non-steroid isoprenoids and requires strict regulation (Goldstein and Brown, 1990). The endoplasmic-reticulum (ER) resident, polytopic membrane glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is central to this pathway, catalysing the formation of mevalonate, a crucial isoprenoid precursor. As the rate-limiting enzyme in mevalonate metabolism, HMGCR levels need to be tightly regulated, as dictated by intermediates and products of the mevalonate pathway (Johnson and DeBose-Boyd, 2018). The statin family of drugs, which acts as competitive inhibitors of HMGCR, represents the single most successful approach to reducing plasma cholesterol levels and preventing atherosclerosis-related diseases (Heart Protection Study Collaborative Group, 2002)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.