Abstract

Cytochrome P450, family 11, subfamily A, polypeptide 1 (Cyp11a1), a cytochrome P450 enzyme, is the first and rate-limiting enzyme in the steroidogenic pathway, converting cholesterol to pregnenolone. Cyp11a1 expression is increased in activated T cells. We sought to determine the role of Cyp11a1 activation in the development of peanut allergy and TH cell functional differentiation. A Cyp11a1 inhibitor, aminoglutethimide (AMG), was administered to peanut-sensitized and challenged mice. Clinical symptoms, intestinal inflammation, and Cyp11a1 levels were assessed. The effects of Cyp11a1 inhibition on T(H)1, T(H)2, and T(H)17 differentiation were determined. Cyp11a1 gene silencing was performed with Cyp11a1-targeted short hairpin RNA. Peanut sensitization and challenge resulted in diarrhea, inflammation, and increased levels of Cyp11a1, IL13, and IL17A mRNA in the small intestine. Inhibition of Cyp11a1 with AMG prevented allergic diarrhea and inflammation. Levels of pregnenolone in serum were reduced in parallel. AMG treatment decreased IL13 and IL17A mRNA expression in the small intestine without affecting Cyp11a1 mRNA or protein levels. In vitro the inhibitor decreased IL13 and IL17A mRNA and protein levels in differentiated T(H)2 and T(H)17 CD4 T cells, respectively, without affecting GATA3, retinoic acid-related orphan receptor γt (RORγt), or T(H)1 cells and IFNG and T-bet expression. Short hairpin RNA-mediated silencing of Cyp11a1 in polarized T(H)2 CD4 T cells significantly decreased pregnenolone and IL13 mRNA and protein levels. Cyp11a1 plays an important role in the development of peanut allergy, regulating peanut-induced allergic responses through effects on steroidogenesis, an essential pathway in T(H)2 differentiation. Cyp11a1 thus serves as a novel target in the regulation and treatment of peanut allergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.