Abstract

In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.