Abstract
BackgroundPlant immune responses can be induced by plant growth-promoting rhizobacteria (PGPRs), but the exact compounds that induce resistance are poorly understood. Here, we identified the novel natural elicitor 3,4-dihydroxy-3-methyl-2-pentanone from the PGPR Bacillus subtilis HN09, which dominates HN09-induced systemic resistance (ISR).ResultsThe HN09 strain, as a rhizobacterium that promotes plant growth, can induce systemic resistance of Arabidopsis thaliana plants against Pseudomonas syringae pv. tomato DC3000, and the underlying role of its metabolite 3,4-dihydroxy-3-methyl-2-pentanone in this induced resistance mechanism was explored in this study. The stereoisomers of 3,4-dihydroxy-3-methyl-2-pentanone exhibited differential bioactivity of resistance induction in A. thaliana. B16, a 1:1 mixture of the threo-isomers (3R,4S) and (3S,4R), was significantly superior to B17, a similar mixture of the erythro-isomers (3R,4R) and (3S,4S). Moreover, B16 induced more expeditious and stronger callose deposition than B17 when challenged with the pathogen DC3000. RT-qPCR and RNA-seq results showed that B16 and B17 induced systemic resistance via JA/ET and SA signalling pathways. B16 and B17 activated different but overlapping signalling pathways, and these compounds have the same chemical structure but subtle differences in stereo configuration.ConclusionsOur results indicate that 3,4-dihydroxy-3-methyl-2-pentanone is an excellent immune elicitor in plants. This compound is of great importance to the systemic resistance induced by HN09. Its threo-isomers (3R,4S) and (3S,4R) are much better than erythro-isomers (3R,4R) and (3S,4S). This process involves SA and JA/ET signalling pathways.
Highlights
Plant immune responses can be induced by plant growth-promoting rhizobacteria (PGPRs), but the exact compounds that induce resistance are poorly understood
To further determine whether the Plant growth-promoting rhizobacterium (PGPR) HN09-induced systemic resistance was dependent on the metabolites of this organism, we examined the ability of HN09 cell treatment (HN09-C), HN09-S and HN09-FB to induce resistance against DC3000
The leaves of plants treated with HN09-C showed typical symptoms of bacterial speck disease, and the yellow or water-soaked spots are surrounded by chlorosis (Fig. 1a)
Summary
Plant immune responses can be induced by plant growth-promoting rhizobacteria (PGPRs), but the exact compounds that induce resistance are poorly understood. We identified the novel natural elicitor 3,4dihydroxy-3-methyl-2-pentanone from the PGPR Bacillus subtilis HN09, which dominates HN09-induced systemic resistance (ISR). Plant growth-promoting rhizobacteria (PGPRs) that colonize host roots can improve disease resistance and promote plant growth [1,2,3]. Most PGPRs generate a series of secondary metabolites [4] as the elicitors of plant defense response, directly or indirectly triggering induced systemic resistance (ISR). The volatile organic compounds (VOCs) 2,3-butanediol and 3-methyl-1-butanol identified from B. subtilis GB03 and B. amyloliquefaciens IN937a confer ISR against the bacterial pathogen Erwinia carotovora subsp. Exopolysaccharides, 2,3-butandiol, bacilysin, difficidin, macrolactin, bacillaene, surfactin, bacillomycin D and fengycin, which are B. amyloliquefaciens SQR9 metabolites can improve systemic resistance against P. syringae pv. Exopolysaccharides, 2,3-butandiol, bacilysin, difficidin, macrolactin, bacillaene, surfactin, bacillomycin D and fengycin, which are B. amyloliquefaciens SQR9 metabolites can improve systemic resistance against P. syringae pv. tomato DC3000 and Botrytis cinerea [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.