Abstract

Measurements of the influence of reactant alignment on the rates of chemical reactions provide direct information concerning the atomic motions necessary for chemical transformation. Data presented here show that at low collision energy, the dissociative adsorption of deuterium (D 2 ) on the (111) surface of copper has a much higher probability for broadside than for end-on collisions. Furthermore, this steric preference is sensitive to the kinetic energy of the incident molecule, almost disappearing as the energy increases to 0.8 electron volt. This study shows that the dynamic conditions of a surface chemical reaction can profoundly influence the associated steric requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.