Abstract

The gut of healthy human neonates is usually devoid of viruses at birth, but quickly becomes colonized, in some cases leading to gastrointestinal disorders1–4. Here we report that viral community assembly in neonates takes place in distinct steps. Fluorescent staining of virus-like particles purified from infant meconium/early stool samples show few or no particles, but by one month of life particle numbers achieve 109 per gram, and these numbers appear to persist through life5–7. We investigated the origin of these viral populations using shotgun metagenomic sequencing of viral-enriched preparations and whole microbial communities, and followed up with targeted microbiological analyses. Results indicate that, early after birth, pioneer bacteria colonize the infant gut, and by one month prophage induced from these bacteria provide the predominant population of virus-like particles. By four months of life, identifiable viruses that replicate in human cells become more prominent. Multiple human viruses were more abundant in stool samples from babies exclusively fed formula versus those fed partially or fully on breast milk, paralleling reports that breast milk can be protective against viral infections8–10. Phage populations also differed associated with breastfeeding. Evidently colonization of the infant gut is stepwise, first mainly by temperate bacteriophages induced from pioneer bacteria, and later by viruses that replicate in human cells, with the second phase modulated by breastfeeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.