Abstract

We explore the heating of the velocity distribution in the solar neighbourhood by stochastic spiral waves. Our investigation is based on direct numerical integration of initially circular test-particle orbits in the sheared sheet. We confirm the conclusion of other investigators that heating by spiral structure can explain the principal features of the age-velocity dispersion relation and other parameters of the velocity distribution in the solar neighbourhood. In addition, we find that heating by strong transient spirals can naturally explain the presence of small-scale structure in the velocity distribution (``moving groups''). Heating by spiral structure also explains why the stars in a single velocity-space moving group have a wide range of ages, a result which is difficult to understand in the traditional model that these structures result from inhomogeneous star formation. Thus we suggest that old moving groups arise from irregularities in the Galactic potential rather than irregularities in the star-formation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.