Abstract

This paper introduces the idea that the general mixing inequality obeyed by evolving stellar phase densities may place useful constraints on the possible history of the over-all galaxy population. We construct simple models for the full stellar phase space distributions of galaxies' disk and spheroidal components, and reproduce the well-known result that the maximum phase density of an elliptical galaxy is too high to be produced collisionlessly from a disk system, although we also show that the inclusion of a bulge component in the disk removes this evolutionary impediment. In order to draw more general conclusions about the evolution of the galaxy population, we use the Millennium Galaxy Catalogue to construct a model of the entire phase density distribution of stars in a representative sample of the local Universe. In such a composite population, we show that the mixing inequality rules out some evolutionary paths that are not prohibited by consideration of the maximum phase density alone, and thus show that the massive ellipticals in this population could not have formed purely from collisionless mergers of a low mass galaxy population like that found in the local Universe. Although the violation of the mixing inequality is in this case quite minor, and hence avoidable with a modest amount of non-collisionless star formation in the merger process, it does confirm the potential of this approach. The future measurement of stellar phase densities at higher redshift will allow this potential to be fully exploited, offering a new way to look at the possible pathways for galaxy evolution, and to learn about the environment of star formation through the way that this phase space becomes populated over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call