Abstract

This paper considers the Steiner Traveling Salesman Problem, an extension of the classical Traveling Salesman Problem on an incomplete graph where not all vertices have demand. Some extensions including several depots or location decisions are introduced, modeled and solved. A compact integer linear programming formulation is proposed for each problem, where the routes are represented with two-index decision variables, and parity conditions are modeled using cocircuit inequalities. Exact branch-and-cut algorithms are developed for all formulations. Computational results obtained confirm the good performance of the algorithms. Instances with up to 500 vertices are solved optimally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call