Abstract

The Steiner problem involves finding a shortest path network connecting a specified set of points. In this paper, we examine the Steiner problem for three points on the surface of a regular tetrahedron. We prove several important properties about Steiner minimal trees on a regular tetrahedron. There are infinitely many ways to connect three points on a tetrahedron, so we present a way to eliminate all but a finite number of possible solutions. We provide an algorithm for finding a shortest network connecting three given points on a regular tetrahedron. The solution can be found by direct measurement of the remaining possible Steiner trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call