Abstract

In this paper we establish a Steinberg-Lusztig tensor product theorem for abstract Fock space. This is a generalization of the type A result of Leclerc-Thibon and a Grothendieck group version of the Steinberg-Lusztig tensor product theorem for representations of quantum groups at roots of unity. Although the statement can be phrased in terms of parabolic affine Kazhdan-Lusztig polynomials and thus has geometric content, our proof is combinatorial, using the theory of crystals (Littelmann paths). We derive the Casselman-Shalika formula as a consequence of the Steinberg-Lusztig tensor product theorem for abstract Fock space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.