Abstract

The steady state response of a cantilevered rotor with skew and mass unbalances is studied, with special attention to the effects due to skew. A disk misaligned with its drive shaft receives active gyroscopic moments which force pitch changes in the disk, much as mass unbalance centrifugal forces induce disk translation. These active gyroscopic moments affect the rotor in ways unpredicted by passive gryoscopics; that is to say the moments acting on a perfectly aligned disk which changes pitch solely due to its precession. Under the combined influences of disk skew and mass unbalance the precessing rotor exhibits an unconventional phase lag response, and it need not be in line with the mass unbalance at low spin rates. This can significantly alter rotor balancing procedures. Rotor critical speeds are studied for their number and severity, with results presented in a compact nondimensional form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.