Abstract
SynopsisWhen a rigid body performs a rotation in a fluid, the system of governing equations consists of conservation of linear momentum of the fluid and conservation of angular momentum of the rigid body. Since the torque at the interface involves the drag due to the fluid flow, the conservation of angular momentum may be viewed as a boundary condition for the field equations of fluid motion. The familiar no-slip condition becomes an additional equation in the system which not only governs the fluid motion, but also the motion of the rigid body. The unknown functions in the system of equations are the velocity field and the pressure field of the fluid motion and the angular velocity of the rigid body.In this paper we obtain existence and uniqueness results for the steady state problem in which a rigid body rotates about an axis of symmetry in a viscous incompressible fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.