Abstract

In this Perspective, we address the fundamentals and possible implications of Rashba phenomena particularly for noncentrosymmetric and heavy element-containing hybrid perovskite systems. The work sheds light on the application paradigm of these exciting phenomena in the field of photovoltaics, light-emitting diodes, and catalytic reactions. The experimental realization along with the theoretical prediction of these phenomena in the emerging energy materials family of hybrid perovskites opens up a new direction for modulating the charge carrier recombination probability of the excited electrons and the holes. The influence of external parameters, such as pressure, uni- and biaxial strain, and electric field, has been addressed explicitly to change the Rashba factor, which essentially suppresses the recombination rate. The current Perspective provides a roadmap of materials design and the effect of external stimuli on the plethora of hybrid perovskite materials for extensive energy scavenging with the focus on photovoltaics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call