Abstract

In order to claim that one has experimentally tested whether a noncontextual ontological model could underlie certain measurement statistics in quantum theory, it is necessary to have a notion of noncontextuality that applies to unsharp measurements, i.e., those that can only be represented by positive operator-valued measures rather than projection-valued measures. This is because any realistic measurement necessarily has some nonvanishing amount of noise and therefore never achieves the ideal of sharpness. Assuming a generalized notion of noncontextuality that applies to arbitrary experimental procedures, it is shown that the outcome of a measurement depends deterministically on the ontic state of the system being measured if and only if the measurement is sharp. Hence for every unsharp measurement, its outcome necessarily has an indeterministic dependence on the ontic state. We defend this proposal against alternatives. In particular, we demonstrate why considerations parallel to Fine’s theorem do not challenge this conclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.