Abstract

We review the nonlinear statistics of Primordial Black Holes that form from the collapse of over-densities in a radiation-dominated Universe. We focus on the scenario in which large over-densities are generated by rare and Gaussian curvature perturbations during inflation. As new results, we show that the mass spectrum follows a power law determined by the critical exponent of the self-similar collapse up to a power spectrum dependent cutoff, and that the abundance related to very narrow power spectra is exponentially suppressed. Related to this, we discuss and explicitly show that both the Press–Schechter approximation and the statistics of mean profiles lead to wrong conclusions for the abundance and mass spectrum. Finally, we clarify that the transfer function in the statistics of initial conditions for Primordial Black Holes formation (the abundance) does not play a significant role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.