Abstract

We consider families of transitive multimodal interval maps with polynomial growth of the derivative along the critical orbits. For these maps Bruin and Todd have shown the existence and uniqueness of equilibrium states for the potential φt : x ↦ −t log |Df(x)|, for t close to 1. We show that these equilibrium states vary continuously in the weak* topology within such families. Moreover, in the case t = 1, when the equilibrium states are absolutely continuous with respect to Lebesgue, we show that the densities vary continuously within these families.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.