Abstract

In this study, the relationship between the pressure drop on the channels due to the methanol flow and the geometry of the flow channels on the anode side of a direct methanol fuel cell (DMFC) has been investigated. Parallel type channels are used as flow channels. The active area of the fuel cell is 5 × 5 cm2. The system consists of channels that are optimally placed in the active area, with channel widths and distance of the channels kept constant. Combinations of 1, 1.5, 2, 2.5, 3 mm measurements were used for flow channel width and distance between channels. The ratio of the area created by the prepared geometries to the active area (percentage of contact area) is defined as a new parameter. The main motivation of this study is to be able to determine the effect of the geometric measurements of the designed flow channels on the intra-channel pressure drop by statistical method. There was a statistically significant difference between the flow channel widths and the distance between the channels and the pressure. Among the selected parameters, the effect of the channel width on the pressure drop was highest but it had a statistically moderate relationship. However, there was no significant relationship between the distance between channels and the pressure drop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call