Abstract

We report the statistical properties of stars and brown dwarfs obtained from four radiation hydrodynamical simulations of star cluster formation, the metallicities of which span a range from 1/100 to 3 times the solar value. Unlike previous similar investigations of the effects of metallicity on stellar properties, these new calculations treat dust and gas temperatures separately and include a thermochemical model of the diffuse interstellar medium. The more advanced treatment of the interstellar medium gives rise to very different gas and dust temperature distributions in the four calculations, with lower metallicities generally resulting in higher temperatures and a delay in the onset of star formation. Despite this, once star formation begins, all four calculations produce stars at similar rates and many of the statistical properties of their stellar populations are difficult to distinguish from each other and from those of observed stellar systems. We do find, however, that the greater cooling rates at high gas densities due to the lower opacities at low metallicities increase the fragmentation on small spatial scales (disc, filament, and core fragmentation). This produces an anti-correlation between the close binary fraction of low-mass stars and metallicity similar to that which is observed, and an increase in the fraction of protostellar mergers at low metallicities. There are also indications that at lower metallicity close binaries may have lower mass ratios and the abundance of brown dwarfs to stars may increase slightly. However, these latter two effects are quite weak and need to be confirmed with larger samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call