Abstract

Due to the failure of thermodynamics for low temperature near-extremal black holes, it has long been conjectured that a ‘thermodynamic mass gap’ exists between an extremal black hole and the lightest near-extremal state. For non-supersymmetric near-extremal black holes in Einstein gravity with an AdS 2 throat, no such gap was found. Rather, at that energy scale, the spectrum exhibits a continuum of states, up to non-perturbative corrections. In this paper, we compute the partition function of near-BPS black holes in supergravity where the emergent, broken, symmetry is PSU(1, 1|2). To reliably compute this partition function, we show that the gravitational path integral can be reduced to that of a supersymmetric extension of the Schwarzian theory, which we define and exactly quantize. In contrast to the non-supersymmetric case, we find that black holes in supergravity have a mass gap and a large extremal black hole degeneracy consistent with the Bekenstein–Hawking area. Our results verify a plethora of string theory conjectures, concerning the scale of the mass gap and the counting of extremal micro-states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.