Abstract

Abstract The upper tropospheric stationary wave response to a tropical sea surface temperature (SST) anomaly is examined with an idealized general circulation model (GCM) as well as steady linear and nonlinear models. The control climate of the GCM is zonally symmetric; this symmetric climate is then perturbed by a dipolar SST anomaly centered at the equator. Two experiments, with anomaly amplitudes differing by a fact of two, have been conducted. The response is very linear in the amplitude of the SST anomaly. A steady, baroclinic model linearized about a zonally symmetric basic state simulates the GCM's stationary wave reasonably well when it is forced by anomalous heating as well as anomalous transients. When decomposing the GCMs flow into parts forced separately by heating and transients, tropical transients are found to play a dissipative role to first approximation, reducing the amplitude of the response to heating by a factor of two. The effects of extratropical transients are relatively weak. A st...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.