Abstract
The effects of hygrothermal cycling upon the performance of a bolted composite joint was examined. Bolt torque relaxed as the number of environmental cycles increased. Comparison with analytical results suggested that the bolt torque “zigzag” behavior probably results from the natural sensitivity of bolted composite joints to the existing ambient temperature and moisture. The washer effect and specimen surface finishes were investigated to study the friction effect on joint bearing performance. Fatigue tests of specimens exposed to hygrothermal cycling exhibited greater hole elongation than specimens not exposed. High preload does improve static failure strength and the fatigue life of specimens under room conditions. Tests run on IM6/3501-6 material specimens with hygrothermal cycling show reasonable declines in fatigue life. The moisture weight gains of composites under hygrothermal cycling exposure were measured and compared to numerical results; good correlation was obtained. As a result, bolt failure occurred in some fatigue tests and is most frequently associated with large thickness-to-diameter ratio. The peak-to-peak stress was defined to study the effect of the R-ratio on bolts for the bolt failure problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.