Abstract

Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1‐vinyl‐2‐ pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma‐rays from 60Co sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range −10 to +10°C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was referred to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with FVP=0.19 has been estimated to be gH2O/gPolymer=0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve‐fit of the early‐stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5×10−11 m2 s−1 and 4.5×10−11 m2 s−1, depending on the polymer composition, the cross‐link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was ≈24 kJ mol−1. Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call