Abstract

The unique physical and chemical properties of ionic liquids (ILs) determine their numerous applications in "green" chemistry and material science. Recently, systems based on ILs have been considered to be promising for use in a new generation of electrochemical devices. The results of a nuclear magnetic resonance (NMR) study of the microstructure of 1-butyl-3-methylimidazolium chloride (IL)/water mixtures in the presence of Al3+ cations are presented. For the first time, the splitting of spectral lines of water in such systems has been recorded. Comparing the 1H and 27Al NMR data, we have detected the existence of different solvate complexes of Al3+ with Cl- and estimated the characteristic times of exchange processes. For the system under study, a model of the Al3+ cation environment and its evolution with temperature and water content has been described. Quantum-chemical calculations have been performed to substantiate the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call