Abstract

The state of the art in the rheology of polymer fluids (polymer solutions and melts) and filled composites is reviewed. This review includes two parts: analysis of the basic principles for the construction of rheological constitutive equations in terms of the continuum mechanics and finding correlations between the rheological characteristics and molecular structure of polymers on the basis of molecular models. Possible approaches to the formulation of constitutive equations are discussed. Special attention is focused on the correct selection of the form of the elastic potential for rubbery deformations induced under the flow of polymer fluids. The use of a power-law potential leads to the best results. To gain unequivocal results and minimize the number of free constants, viscoelastic characteristics of polymer fluids should be described in terms of a continuous relaxation spectrum as a power-law function limited by the maximum relaxation time. To solve the boundary problems by the selected constitutive equation, analysis of the dynamic stability is required, because the combination of viscosity and elasticity controls the limits of flow upon shear and tensile. Deformation can also lead to changes in the phase state of a polymer system. Furthermore, correct formulation of the boundary conditions is necessary because, in many cases, polymer fluids and, in particular, filled materials tend to efficient slip along walls. The existing molecular models adequately describe the characteristics of monodisperse polymers; however, on passing to polydisperse polymers, the additional use of semiempirical approaches is required. The modern level of experimental studies allows test measurements over a wide range of deformation rates, frequencies, and temperatures. However, in this field, the mainstream tendency in experimental studies is concerned with hybrid methods, which combine direct rheological measurements with optical observations of local structure and its evolution in the material. In this case, various physical principles of measurements are applied. In recent years, much interest has been focused on studying polymer compositions containing nanosized fillers, which are able to produce their structures in melt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call