Abstract

Henry's law constants for benzene in water have been measured by bringing water layers into equilibrium with solutions of benzene in carbon tetrachloride or in cyclohexane. The mole fraction of benzene in the aqueous layer was determined by ultraviolet absorption spectrophotometry, and its fugacity was taken as equal to that in the nonaqueous phase, reliable data for the C6H6−CCl4 and C6H6−c−C6H12 systems being available in the literature. Measurements were made at 5o intervals from 10 to 30°C inclusive, at mole fractions down to from 10% to 20% of saturation. In no case did Henry's law constant depart significantly from constancy, and it was in reasonable agreement with some representative literature values based on saturated solubility. The constancy and the magnitudes of our Kh values indicate that appreciable dimerization does not occur in the temperature range examined here. This conclusion contrasts with the suggestion of Reid, Quickenden, and Franks that their calorimetrically measured heat of solution of benzene in water is different enough from the van't Hoff heat to imply possible dimerization of the solute; it also contrasts with the hydrophobic-bond-forming tendency which Ben-Naim, Wilf, and Yaacobi ascribe to benzene on the basis of their studies of the solubilities of benzene and biphenyl. The results of the latter study, when combined with the known second virial coefficient of benzene vapor, predict that more than 20% of the benzene in saturated aqueous solution at 25°C should be present as dimer, in clear contradiction to the results of the present work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call