Abstract

It is theoretically and empirically well established that body mass variation in small birds reflects a trade‐off between starvation risk and predation risk. This occurs because carrying increased fat reserves reduces starvation risk but also results in a higher predation risk due to reduced escape flight performance and/or the increased foraging exposure needed to maintain a higher body mass. In principle, therefore, the theory of mass‐dependent predation risk could be used to understand how a bird perceives and responds to the risks in its environment, because its mass will reflect the predictability of foraging opportunities and predation risk. Mass in birds may then provide a relatively straightforward way of assessing the foraging environment of birds and so the potential conservation problems a species faces. This study tests, for the first time for any species, how body mass changes in response to changing starvation risk, changing predation risk and changing population status. Common Starling Sturnus vulgaris mass varies as predicted by starvation–predation risk trade‐off theory: mass is lower when foraging conditions are more favourable and when predation risk is increased. The populations that are declining the most strongly have higher mass, which is most likely indicative of a poor foraging environment, leading to lower relative survival. The results suggest that increased mass in Starlings, and possibly in other species, may provide an indication of the poor quality of the foraging environment and/or rapidly declining populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call