Abstract

This paper is a sequel to our previous work for accretion onto a Schwarzschild black hole and the so-called standing accretion shock instability (SASI), in this paper we investigate non-axisymmetric perturbations for a Kerr black hole. The linear and non-linear phases for the shock evolution are analyzed in detail by both 2D general relativistic hydrodynamical simulations and linear analysis. Since the structure of steady axisymmetric accretion flows with a standing shock wave is very sensitive to the inner transonic flow, their properties such as Mach numbers, which are important for the stability, depend on the Kerr parameter very much. Although the essential features of the instability do not differ from the previous results for the Schwarzschild black hole, the frame dragging effects specific to the Kerr black hole is also evident. Interestingly, the oscillation periods of the fundamental unstable modes are dependent only on the shock radius irrespective of the injection parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.