Abstract

The standardized spectral mixture model combines the specificity of a physically based representation of a spectrally mixed pixel with the generality and portability of a spectral index. Earlier studies have used spectrally and geographically diverse collections of broadband and spectroscopic imagery to show that the reflectance of the majority of ice-free landscapes on Earth can be represented as linear mixtures of rock and soil substrates (S), photosynthetic vegetation (V) and dark targets (D) composed of shadow and spectrally absorptive/transmissive materials. However, both broadband and spectroscopic studies of the topology of spectral mixing spaces raise questions about the completeness and generality of the Substrate, Vegetation, Dark (SVD) model for imaging spectrometer data. This study uses a spectrally diverse collection of 40 granules from the EMIT imaging spectrometer to verify the generality and stability of the spectroscopic SVD model and characterize the SVD topology and plane of substrates to assess linearity of spectral mixing. New endmembers for soil and non-photosynthetic vegetation (NPV; N) allow the planar SVD model to be extended to a tetrahedral SVDN model to better accommodate the 3D topology of the mixing space. The SVDN model achieves smaller misfit than the SVD, but does so at the expense of implausible fractions beyond [0, 1]. However, a refined spectroscopic SVD model still achieves small (<0.03) RMS misfit, negligible sensitivity to endmember variability and strongly linear scaling over more than an order of magnitude range of spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.