Abstract

Amid all candidates of physics beyond the Standard Model, string theory provides a unique proposal for incorporating gauge and gravitational interactions. In string theory, a four-dimensional theory that unifies quantum mechanics and gravity is obtained automatically if one posits that the additional dimensions predicted by the theory are small and curled up—a concept known as compactification. The gauge sector of the theory is specified by the topology and geometry of the extra dimensions, and the challenge is to reproduce all of the features of the Standard Model of particle physics from them. We review the state of the art in reproducing the Standard Model from string compactifications and summarize the lessons drawn from this fascinating quest. We describe novel scenarios and mechanisms that string theory provides to address some of the Standard Model puzzles as well as the most frequent signatures of new physics that could be detected in future experiments. We then comment on recent developments that connect, in a rather unexpected way, the Standard Model with quantum gravity and that may change our field theory notion of naturalness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.