Abstract
A non-empty word w is a Lyndon word if and only if it is strictly smaller for the lexicographical order than any of its proper suffixes. Such a word w is either a letter or admits a standard factorization uv where v is its smallest proper suffix. For any Lyndon word v , we show that the set of Lyndon words having v as right factor of the standard factorization is regular and compute explicitly the associated generating function. Next, considering the Lyndon words of length n over a two-letter alphabet, we establish that, for the uniform distribution, the average length of the right factor v of the standard factorization is asymptotically 3 n / 4 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.