Abstract
Multithreaded processor architectures are becoming increasingly commonplace: many current and upcoming designs support chip multiprocessing, simultaneous multithreading, or both. While it is relatively straightforward to use these architectures to improve the throughput of a multithreaded or multiprogrammed workload, the real challenge is how to easily create parallel software to allow single programs to effectively exploit all of this raw performance potential. One promising technique for overcoming this problem is Thread-Level Speculation (TLS) , which enables the compiler to optimistically create parallel threads despite uncertainty as to whether those threads are actually independent. In this article, we propose and evaluate a design for supporting TLS that seamlessly scales both within a chip and beyond because it is a straightforward extension of write-back invalidation-based cache coherence (which itself scales both up and down). Our experimental results demonstrate that our scheme performs well on single-chip multiprocessors where the first level caches are either private or shared. For our private-cache design, the program performance of two of 13 general purpose applications studied improves by 86% and 56%, four others by more than 8%, and an average across all applications of 16%---confirming that TLS is a promising way to exploit the naturally-multithreaded processing resources of future computer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.