Abstract

COVID-19, caused by SARS-CoV-2, has been spreading worldwide for more than two years and has led to immense challenges to human health. Despite the great efforts that have been made, our understanding of SARS-CoV-2 is still limited. The viral helicase, NSP13 is an important enzyme involved in SARS-CoV-2 replication and transcription. Here we highlight the important role of the stalk domain in the enzymatic activity of NSP13. Without the stalk domain, NSP13 loses its dsRNA unwinding ability due to the lack of ATPase activity. The stalk domain of NSP13 also provides a rigid connection between the ZBD and helicase domain. We found that the tight connection between the stalk and helicase is necessary for NSP13-mediated dsRNA unwinding. When a short flexible linker was inserted between the stalk and helicase domains, the helicase activity of NSP13 was impaired, although its ATPase activity remained intact. Further study demonstrated that linker insertion between the stalk and helicase domains attenuated the RNA binding ability and affected the thermal stability of NSP13. In summary, our results suggest the crucial role of the stalk domain in NSP13 enzymatic activity and provide mechanistic insight into dsRNA unwinding by SARS-CoV-2 NSP13.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.