Abstract

Chandrasekhar's theory of the stability of viscous flow of an electrically conducting fluid between coaxial rotating cylinders with perfectly conducting walls is extended to include the case of non-conducting walls, and it is found that their effect is to reduce the critical Taylor numbers and increase the wavelength of the instability patterns by considerable amounts. An experiment designed to measure the values of magnetic field and rotation speed at the onset of instability in mercury between perspex cylinders is described. The radioactive isotopes Hg197 and Hg203 were used to trace the flow. The results support the theoretical prediction that the boundary conditions can have a large effect on the motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.