Abstract
The isolated pentagon rule (IPR) is now widely accepted as a general rule for determining the stability of all-carbon fullerene cages composed of hexagons and pentagons. Fullerenes that violate this rule have been deemed too reactive to be synthesized. The stabilization of non-IPR endohedral fullerenes depends on charge transfer from the encapsulated metal clusters (endoclusters) to fullerene cages, the electronic properties of empty all-carbon cages, the matching size and geometries of fullerene and endocluster, as well as the strong coordination of the metal ions to fused pentagons. The stability of non-IPR exohedral fullerenes can be rationalized primarily by both the 'strain-relief' and 'local-aromaticity' principles. This Review focuses on recent work on stabilization of non-IPR fullerenes, including theoretical and empirical principles, experimental methods, and molecular structures of fused-pentagon fullerenes characterized so far. The special chemical properties of non-IPR fullerenes that distinguish them from IPR-satisfying ones are also emphasized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.